EnviEye Air Pollution Monitoring System

TECHNICAL DOCUMENTATION PATENT PENDING: #63250768

Table of Contents

Contents

Introduction

Why MOS Gas Sensors	7
Operating Principle	
Gas Measurement Method	
Gas Selectivity	6
Gas Sensor Complex	
Hardware	
Figaro TGS260X Schematics	
Figaro TGS260X Calibration	10
MQ-135 Schematics	11
MQ-135 Calibration	
DHT11 Schematics	13
Processors	
Software	
Sensor Program	16
Algorithmic Correction Method	
Live Data Output	18
Case Studies	
Enclosure	20
MassDEP Testing	21
Nyanza Chemical Waste Dump	22
Sensor Drift Study	
MOS in Ambient Environments	25
Multivariable Polynomial Modeling	26
CO Case Study	27
ANOVA Testing	29
Gas Selectivity	
Sensor Location	
MassDEP Monitoring Network	
EnviEye Monitoring Network	33

Introduction

Why MOS Gas Sensors?

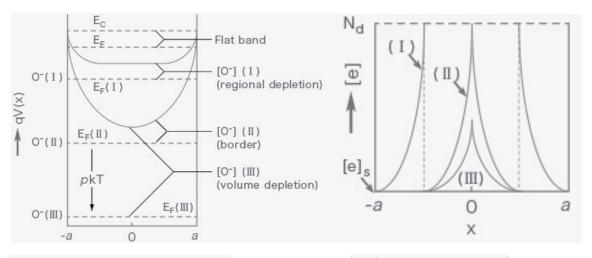
Operating Principle

Gas Measurement Method

Gas Sensor Complex

EnviEye Air Pollution Monitoring System TECHNICAL DOCUMENTATION | PATENT PENDING #63250768

Why MOS Gas Sensors?


Metal oxide semiconductor (MOS) gas sensors employing tin oxide (SnO₂) as the primary sensing material show promise for ambient air pollution monitoring due to many advantageous features such as high sensitivity, fast response and recovery, versatile selectivity through operational temperature, capability for low-cost mass production, and applicability in small-scale mobile applications. MOS gas sensors make use of inexpensive sensing elements that use electrochemical reactions between target gases and a substrate electrode, producing a signal current in proportion to the gas concentration, which is reflected in the magnitude of sensor resistance.

The sensor technology has been shown to measure various volatile organic compounds, NO₂, CO, CH₂, and H₂S, with reasonable precision and accuracy. As a result, MOS sensor technology has been widely applied in automatic ventilation control systems, household applications, and recently also in toxic gas sensor devices. The present innovation seeks to employ MOS gas sensors for the measurement of concentrations of toluene (VOC), CO, NOx, CO₂, CH₄, NH₃, and/or H₂S utilizing a sensor complex equipped with a temperature/humidity sensor and microcontroller to enable algorithmic correction for fluctuations in ambient temperature and humidity.

Operating Principle

When semiconductor particles are heated in air at high temperatures, oxygen is adsorbed on the particle surface by capturing free electrons. The depletion layer thus formed is largely dependent on the radius of semiconductor particles used. If it is as small as conventionally used in gas sensors, the depletion can extend up to the whole area of each particle. If the size is far larger, on the other hand, depletion takes place conventionally on the periphery of each particle. The figure below shows how the energy band structure and the distribution of conduction electrons change with increasing the partial pressure of oxygen from zero (flat band state) to state I (regional depletion), II (border), and III (volume depletion). The adsorption equilibrium is attained by increasing the depletion layer thickness until the border is reached. Later, during volume depletion, however, the Fermi level is lowered by pkT ongoing from II to III while the layer thickness is kept constant.

Х	: Distance in a radial direction
qV(x)	: Potential energy
а	: Particle radius
[O ⁻]	: Adsorbed oxygen concentration
Ec	: Conduction band energy
E _F	: Fermi level
pkT	: Fermi level shift

[e] : Electron concentration N_d : Donor density

Energy band structure (top) and distribution of conduction electrons (bottom) for a semiconductor particle as correlated with an increase in adsorbed oxygen concentration (Yamazoe et al., 2011)

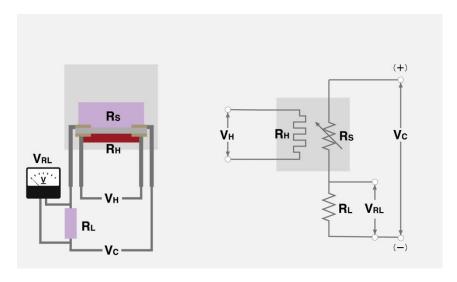
In this stage, two important equations are derived theoretically for a sensor device consisting of spherical particles, as follows.

$$[e]_S=N_d \exp\{-(1/6)(a/L_D)^2-p\} \dots (1)$$
 $R/R_0=N_d/[e]_S \dots (2)$

Here $[e]_S$ is the surface electron concentration of particles, and L_D is the Debye length. R and R_D are the sensor resistances at the steady-state and flat band state, respectively. When sensor materials are selected, N_d , a, L_D and R_D are fixed, while p is dependent on the actual gaseous conditions. As described, MOS-type gas sensors change resistance due to a change in adsorbed oxygen concentration. If this is used adequately, one can detect reducing gases like carbon monoxide. The adsorbed oxygen formed in clean air will be consumed on contact with carbon monoxide, the resulting decrease of R being used to estimate the concentration of carbon monoxide. The sensor recovers the original level of resistance when carbon monoxide is off. Such a detection mechanism is operative in tin dioxide-based gas sensors.

MOS gas sensor resistance (R_s) is calculated with a measured value of $V_{OUT}(V_{RL})$ by using the following formula:

$$R_s = \left(\frac{v_C}{v_{RL}} - 1\right) R_L$$

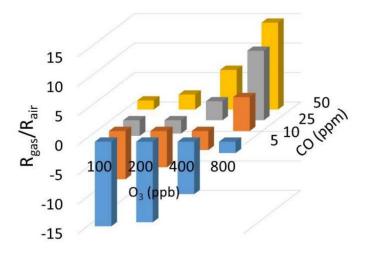

Where V_C is the circuit voltage (in volts), R_L is a load resistor (in ohms), and V_{RL} is the voltage across the load resistor (in volts). One method of obtaining gas sample concentration algorithmically from the R_S value is by conducting power regression on the sensitivity characteristics parameters of the sensor for different gasses provided by the manufacturer. Relating the sensor resistance ratio (R_S/R_0), where R_0 is sensor resistance in a sample of ambient "fresh" air at 20°C and 65% relative humidity to model standard test conditions, to the sample gas concentration yields the following formula:

$$C_{gs} = a \left(\frac{R_s}{R_0}\right)^b$$

Where C_{gs} is the concentration of the gas sample (ppm) and [a, b] are coefficients specific to the gas chemistry. Employing this formula, a temperature/humidity dependency curve can be constructed, and the variability of the sensor resistance ratio over a chosen temperature and humidity range can be related. Note that inherent variability in R_s response between sensors exists due to the manufacturing process, which makes for weak reproducibility. Therefore, a more accurate representation of sensor response is produced by applying R_s/R_0 in the extraction model, which is independent of variation among sensors in standard resistance readings. Modeling the necessary resistance ratio correction equation enables the generation of a sensor resistance correction factor, K, when combined with the response from an auxiliary temperature sensor. The K value can be integrated into the gas concentration calculation equation based on a second-order polynomial model to yield corrected concentrations values using an adjusted exponential model as shown:

$$C_{gs} = a \left(\frac{R_s}{R_0 K} \right)^b$$

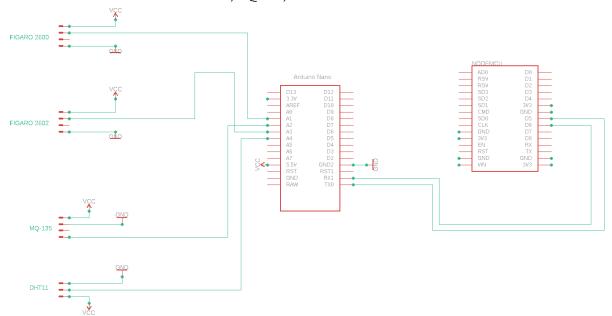
Accurate gas concentration measurements can be obtained by applying this method for a MOS gas sensor's corroborating sensitivity curve.



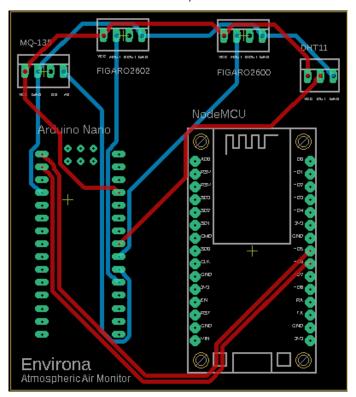
MOS Gas Sensor Schematic (Figaro Engineering Inc., 2018)

MOS gas sensors are limited by poor selectivity of gasses due to electron adsorption occurring due to interactions with non-target gasses. This poses a significant issue for MOS gas sensors use in ambient environments with the presence of multiple gas chemistries of unknown concentration.

To enhance selectivity, the proposed gas sensor complex hosts an array of tin oxide metal-oxide gas sensors to accomplish the direct measurement of CO₂, CO, and NOx with thermal selectivity to regulate sensor working temperature. Detection of trace concentrations of VOCs, CH₄, NH₃ and/or H₂S is enabled by "cross selectivity correction". Based on the neural network machine learning algorithm proposed by Tayebi et al. in 2021, the employed method determines unique fingerprints of individual gases within a homogenous mixture by manipulating the multidimensional data from the three gas sensors and a temperature/humidity sensor. The program utilizes a trained hybrid regression/ANN algorithm to enable predictions under ambient conditions to yield self-calibrated concentration values that enable sensitive and selective gas sensing.



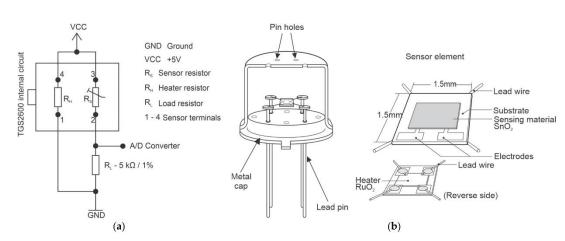
Example 3D Histogram of SnO₂ Sensor Resistance Change at a Given O₃-CO Concentration Combination (Tayebi et al., 2021)


Applying the procedure followed by Tayebi et al. for the O_3 -CO experiment, similar machine learning training data sets were obtained for all the metal oxide sensors and at various operating temperatures and humidities under various target gas concentrations and combinations.

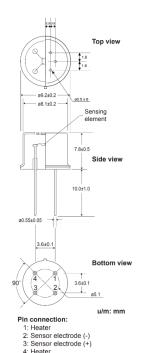
The proposed gas sensor complex applies the described gas concentration method and consists of an Arduino Nano for processing, a NodeMCU for WiFi connection, a Figaro TGS2600 gas sensor, a Figaro TGS2602 gas sensor, an MQ-135 gas sensor, and a DHT11 temperature/humidity sensor. The primary circuit is shown below with abstracted TGS260X, MQ-135, and DHT11 microcircuits.

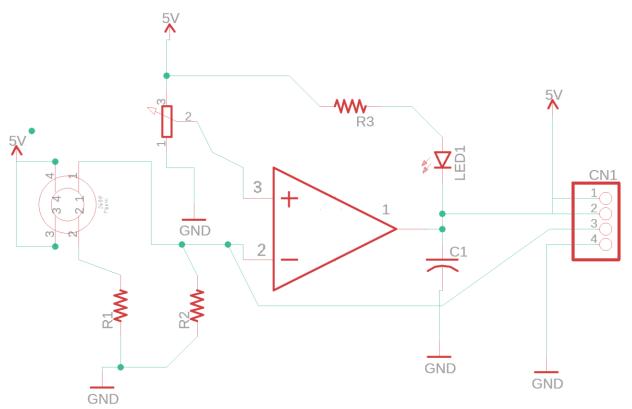
Gas Sensor Complex Circuit

Gas Sensor Complex PCB


Hardware

Figaro TGS260X Schematics and Calibration MQ-135 Schematics and Calibration DHT11 Schematics Processors


EnviEye Air Pollution Monitoring System TECHNICAL DOCUMENTATION | PATENT PENDING #63250768



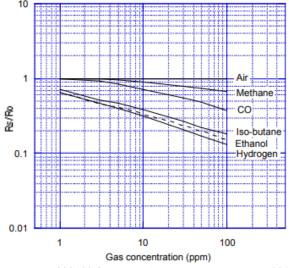
A custom microcircuit and PCB was designed for the TGS2600 and TGS2602 to mount the base model sensor. The schematics for the isolated sensor and microcircuit are shown below.

Figaro TGS260X Gas Sensor (Figaro Technical Information for TGS2600, 2013)

Figaro TGS260X Microcircuit Custom Circuit Schematic

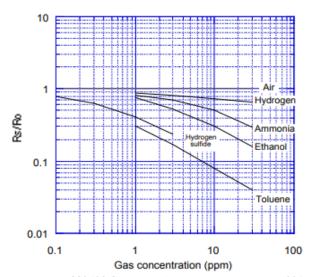
Figaro TGS260X Calibration

Figaro TGS260X calibration occurred under standard circuit conditions and standard test conditions. Sensors were allowed to reach equilibrium and given a conditioning period of 7 days prior to calibration. In a climate-controlled gas chamber, multi-point calibration occurred for each TGS2600 sensor in 11.1, 26.7, 34.9 PPM H_2 gas samples and for each TGS2602 sensor in 12.3, 27.4, and 36.3 PPM Ethanol gas samples.


Typical detection range			1 ~ 30ppm of H ₂	
	Heater voltage	Heater voltage VH		2V AC/DC
Standard circuit conditions	Circuit voltage	Vc	5.0±0.2V DC	Ps≤15mW
	Load resistance	RL	variable	0.45kΩ min.
	Heater resistance	Rн		at room temp.
Electrical characteristics under standard test	Heater current	Ін	42:	±4mA
	Heater power consumption	Рн	210mW	VH=5.0V DC
conditions	Sensor resistance Rs		10 k Ω ~ 90 k Ω in air	
	Sensitivity (change ratio of Rs)		0.3~0.6	Rs (10ppm of H ₂) Rs air
	Test gas conditions			mal air C, 65±5%RH
Standard test conditions	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC	
	Conditioning period before test		7 days	

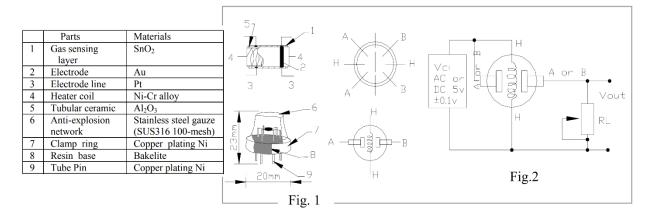
Typical de	tection range	1 ~ 30ppm of EtOH		
	Heater voltage Vi		5.0±0.2V AC/DC	
Standard circuit conditions	Circuit voltage	Vc	5.0±0.2V DC Ps≤15mV	
	Load resistance	RL	variable	0.45kΩ min.
	Heater resistance	Rн		Ω at room temp. ypical)
Electrical characteristics under standard test conditions	Heater current	lн	56±5mA	
	Heater power consumption		280mW (typical)	
conditions	Sensor resistance	Rs	10kΩ ~ 100kΩ in air	
	Sensitivity (change ratio of Rs)		0.08~0.5	Rs (10ppm of EtOH) Rs air
	Test gas conditions			rmal air C, 65±5%RH
Standard test conditions	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC	
	Conditioning period before test		7 days	

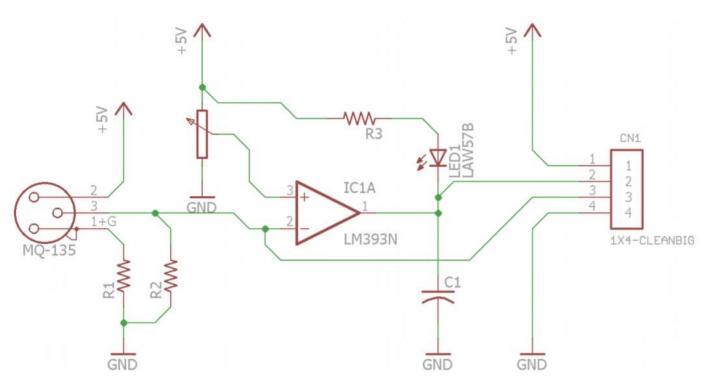
Figaro TGS2600 Specifications (Figaro Engineering Inc., 2013)


Figaro TGS2602 Specifications (Figaro Engineering Inc., 2013)

Sensitivity Characteristics:

Figaro TGS2600 Sensitivity (Figaro Engineering Inc., 2013)


Sensitivity Characteristics:


Figaro TGS2602 Sensitivity (Figaro Engineering Inc., 2013)

A custom microcircuit and PCB was designed for the MQ-135 to mount the base model sensor. The schematics for the isolated sensor and microcircuit are shown below.

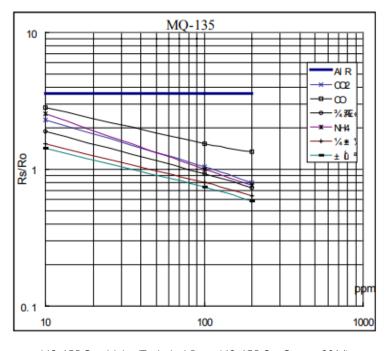
MQ-135 Physical Specifications (Technical Data: MQ-135 Gas Sensor, 2014)

MQ-135 Microcircuit Custom Circuit Schematic

MQ-135 calibration occurred under standard circuit conditions and standard test conditions. Sensors were allowed to reach equilibrium and given a conditioning period of 24 hours prior to calibration. In a climate-controlled gas chamber, multipoint calibration occurred in 23.2, 53.4, and 107.1 PPM NH_3 gas samples.

A. Standard work condition

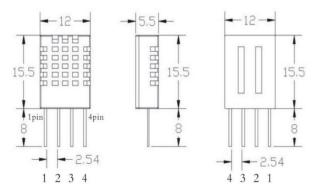
Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
$V_{ m H}$	Heating voltage	5V±0.1	ACOR DC
$R_{ m L}$	Load resistance	can adjust	
R_{H}	Heater resistance	33Ω±5%	Room Tem
P_{H}	Heating consumption	less than 800mw	

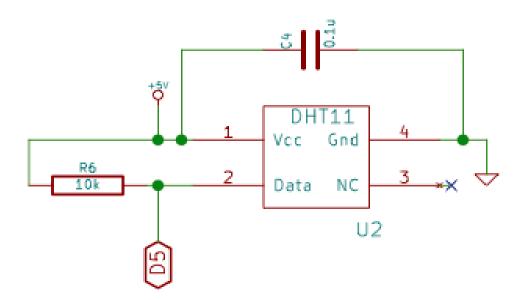

B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10 -45	
Tas	Storage Tem	-20 -70]
R_{H}	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

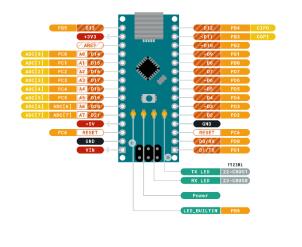
Symbol	Parameter name	Technical parameter	Ramark 2
Rs	Sensing	30ΚΩ-200ΚΩ	Detecting concentration
	Resistance	(100ppm NH ₃)	scope
			10 ppm- 300 ppm NH_3
α	Concentration		10ppm-1000ppm
(200/50)	Slope rate	≤0.65	Benzene
NH ₃			10ppm-300ppm
Standard	Temp: 20 ±2	Vc:5V±0.1	Alcohol
Detecting	Humidity: 65%±5%	% Vh: 5V±0.1	
Condition			
Preheat time	Over 24 ho	ur	


MQ-135 Specifications (Technical Data: MQ-135 Gas Sensor, 2014)


MQ-135 Sensitivity (Technical Data: MQ-135 Gas Sensor, 2014)

DHT11 sensors provided the auxiliary temperature and humidity data necessary for the correction algorithm for the gas sensor complex. These sensors have been precalibrated by the manufacturer and have an accuracy of $\pm 5\%$ RH and $\pm 2\%$ C with a detection range of 20-90%RH and 0-50%C. Physical and circuit schematics are shown below.

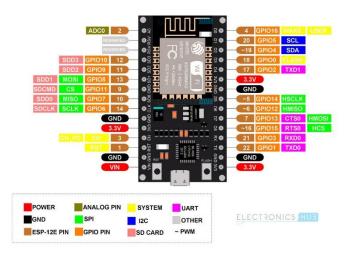
DHT11 Physical Specifications (Aosong Guangzhou Electronics Co., Ltd., 2011)



DHT11 Transducer Module Circuit Schematic

Arduino Nano Microcontroller

The Arduino Nano processes the incoming data from the sensor complex and integrates a correction algorithm to calculate the selected gas concentrations. A pinout diagram is shown below.



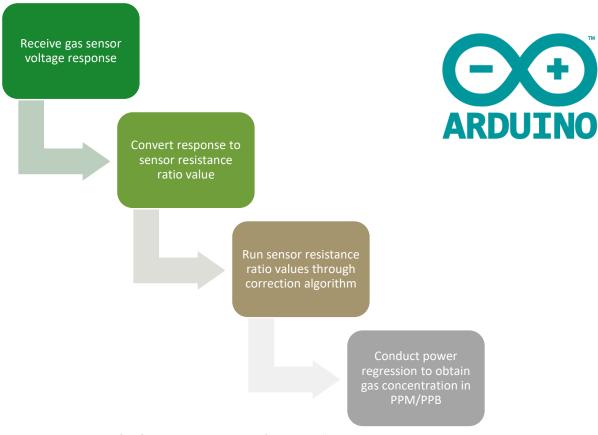
Arduino Nano Microcontroller Pinout Diagram (Arduino Inc., 2021)

NodeMCU WiFi Module

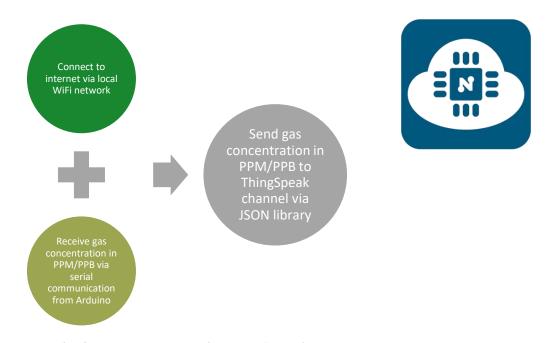
The NodeMCU ESP8226 module receives gas concentrations from the Arduino Nano and stores them temporarily. Employing the JSON library, the module utilizes a WiFi connection to the internet for live data uploads to a MATLAB ThingSpeak Channel. A pinout diagram is shown below.

NodeMCU WiFi Module Pinout Diagram (Electronics Hub, 2021)

Software

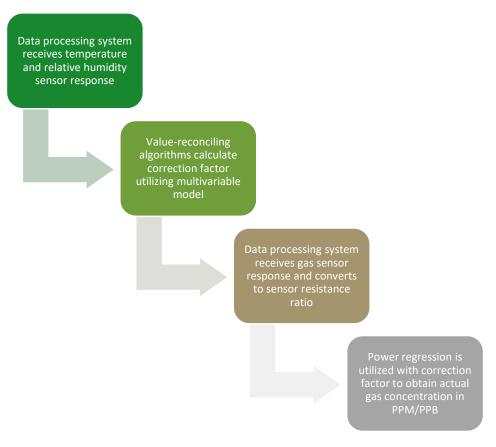

Sensor Program

Algorithmic Correction Method

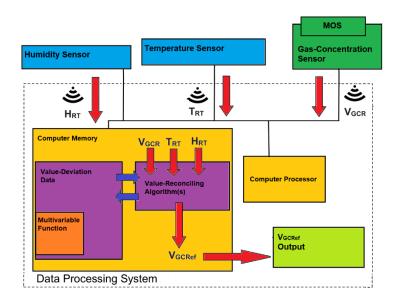

Live Data Output

EnviEye Air Pollution Monitoring System TECHNICAL DOCUMENTATION | PATENT PENDING #63250768

Gas Concentration Extraction Code Logic (Arduino)

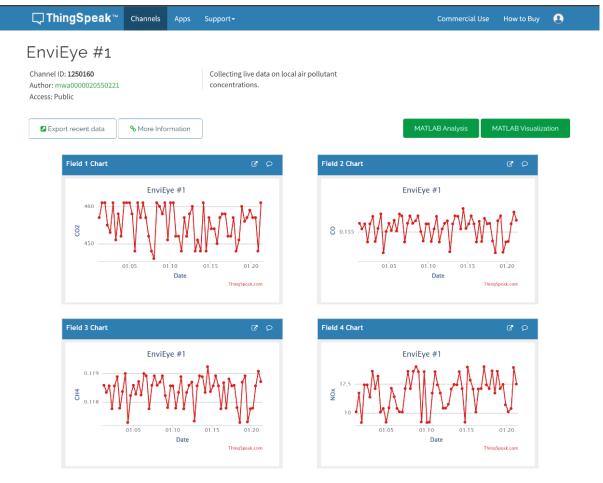


Gas Concentration Data Feed Code Logic (NodeMCU)


Algorithmic Correction Method

To account for the MOS gas sensor's drift due to ambient temperature and relative humidity fluctuation, an algorithmic correction method was employed to produce corrected gas concentration values. A code logic diagram and schematic of the system mechanics are shown below.

Correction Enabled Gas-Concentration Detector System Code Logic



Correction Enabled Gas-Concentration Detector System Schematic

Live Data Output

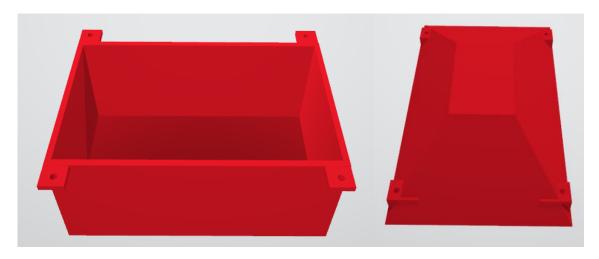
Air

MATLAB ThingSpeak Channel Sample Data from EnviEye Sensor #1

Air Pollutant Information

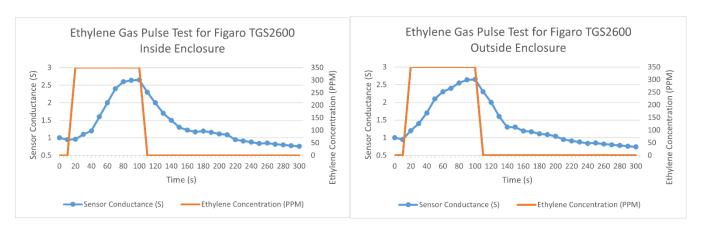
	Pollutant	Greenhouse Gas	Level	Long Term Adverse Health Effects
CO ₂	Carbon Dioxide	1	409.8 PPM	High blood pressure, lung diseases
CO	Carbon Monoxide	X	9 PPM	Memory problems, difficulty concentrating, vision loss, hearing loss, and Parkinsonism
CH ₄	Methane	1	1.8 PPM	Development of epilepsy, pneumonia, claustrophobia, heart problems, memory loss, and depression
NOx	Nitrous Oxide	1	53 PPB	Vitamin B-12 deficiency, nerve damage, anemia, memory loss, birth defects, weakened immune system, lung disease, and asthma
NH ₃	Ammonia	X	5 PPB	Chronic cough, asthma, lung fibrosis, eye membrane irritation, chronic respiratory irritation, and dermatitis
H ₂ S	Hydrogen Sulfide	X	0.3 PPM	Neurotoxicity, acute respiratory failure, convulsions, coma, brain and heart damage
Toluene	Volatile Organic Compound	X	13 PPB	Chronic headaches, chronic nausea, liver and kidney damage, central nervous system damage, neurotoxicity, and cancer

Pollutant Concentration Typical Levels and Health Risks (USA EPA NAAQS Table, 2021; WHO Air Quality Guidelines for Europe, 2000)


Case Studies

Enclosure MassDEP Testing Nyanza Chemical Waste Dump

EnviEye Air Pollution Monitoring System TECHNICAL DOCUMENTATION | PATENT PENDING #63250768

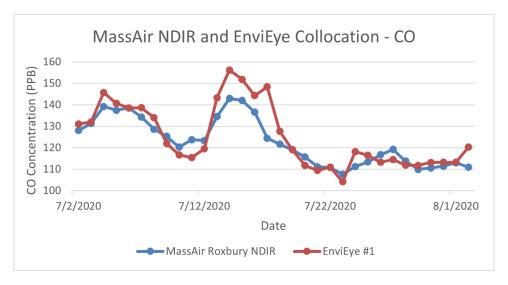


The EnviEye enclosure is designed to be weatherproof and allow ample gas ventilation for accurate gas concentration measurements. PP GF30 (Polypropylene 30% glass fiber) was the selected 3D printing material because it is not only waterproof, but also resistant to aggressive environments, including high heat, UV, and chemicals.

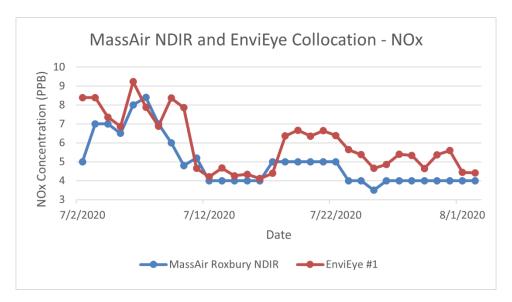
EnviEye Enclosure 3D Schematics

To verify whether the enclosure has adequate ventilation, a pulsed gas sample test was conducted. Utilizing an approach devised by Lello et al., the EnviEye Sensor was placed inside a gas chamber, exposed to ambient air, and then injected with ethylene gas to yield a 350 PPM C_2H_4 gas mix – the typical Figaro TGS260X upper test limit. Figaro TGS2600 sensor conductance and response time were then recorded and averaged for 10 trials in the gas chamber environment.

Mean Response of Figaro TGS2600 Inside Enclosure versus Outside Enclosure to Ethylene Gas Pulse Test


Condition	Response Time (s)	Recovery Time (s)
Inside Enclosure	23 ±5	117 ±5
Outside Enclosure	11 ±2	98 ±3

Mean Response Time and Recovery Time Inside Enclosure versus Outside Enclosure Data Table


The Figaro TGS2600 sensor inside the designed enclosure exhibits a comparable response and recovery time to the sensor outside the enclosure.

CO and NOx concentration measurement accuracy checks for the EnviEye sensor were conducted via collocation with a high-accuracy NDIR sensor hosted by the MassDEP in West Roxbury along Harrison Avenue. The NDIR sensor is ±20 PPB accurate for CO and ±5 PPB accurate for NOx. A thirty-day collocation period was chosen in the local ambient environment.

MassDEP Roxbury Site NDIR Sensor vs. EnviEye Sensor #1 CO Accuracy Qualification 07/02/20 - 08/02//2020

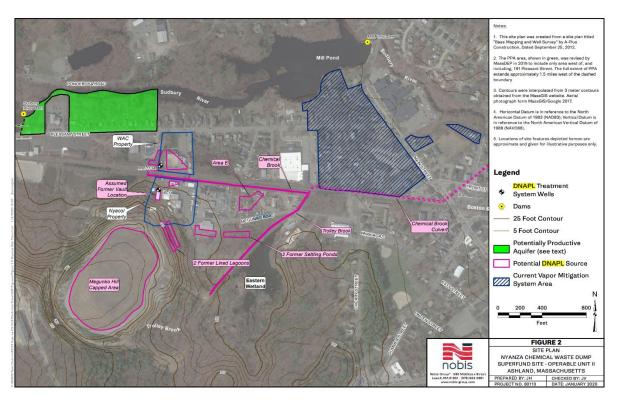
MassDEP Roxbury Site NDIR Sensor vs. EnviEye Sensor #1 NOx Accuracy Qualification 07/02/20 - 08/02//2020

Sensor	Mean CO	Mean Absolute Residual	Mean NOx	Mean Absolute Residual
	Concentration (PPB)	CO Concentration (PPB)	Concentration (PPB)	NOx Concentration (PPB)
MassAir NDIR	122.702	4.911	4.950	1.099
EnviEye #1	125.218		5.936	

MassDEP Roxbury Site NDIR Sensor vs. EnviEye Sensor #1 Accuracy Qualification Data Table

The collected data demonstrates that the EnviEye Sensor's gas concentration measurements correlate to the MassDEP's NDIR Sensor with an accuracy of approximately ±5 PPB for CO and ±1 PPB for NOx.

Nyanza Chemical Waste Dump


Introduction

In early 2020, EnviEye #1 detected higher than usual concentrations of toluene in the EPA Superfund Site Nyanza Chemical Waste Dump in Operable Unit II. Higher concentrations were notably observed near dense non-aqueous phase liquid (DNAPL) sites, a finding confirmed by previous EPA investigations corroborating VOC vaporization to DNAPL sites located under the waste dump.

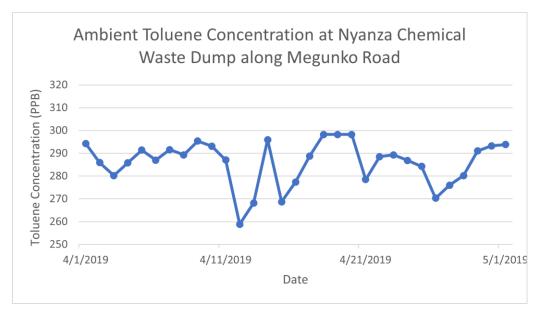
Health Risks

Toluene is a VOC known to damage the human central nervous system, but the EPA has not found sufficient evidence of its carcinogenic effects. However, toluene is a precursor to benzene, another VOC with severe carcinogenic potential. As such, it is likely that the groundwater in toluene vaporization zones is also contaminated with benzene-containing DNAPL.

In addition, primary solvents purchased in 1970 by Nyanza Inc. included toluene and benzene derivatives, including nitrobenzene (30,250 lbs.), 2-nitrochlorobenzene (20,850 lbs.), 2-nitrotoluene (25,000 lbs.), and TCE (1,000 lbs.). This provides further evidence that DNAPL zones in the area are leaching toxic levels of toluene and benzene, posing a significant health risk to Ashland, MA residents living in the area.

Nyanza Chemical Waste Dump Operable Unit II Site Map with Highlighted Potential DNAPL Source Zone

Toluene Accuracy Qualification


EnviEye Sensor #1 underwent rigorous toluene accuracy testing via collocation with the MassDEP's high-accuracy NDIR sensor located along Harrison Avenue in Roxbury. ANOVA statistical tests revealed that the correlation in an ambient environment for measured toluene concentrations between the MassAir Sensor and EnviEye Sensor #1 was significant. The EnviEye sensor was found to have an accuracy of ±10 PPB when compared to the NDIR sensing unit.

Nyanza Chemical Waste Dump Cont.

Location

EnviEye Sensor #1 was located for a one-month period adjacent to the Chemical Brook along Megunko Road – the periphery of the potential DNAPL source zone highlighted in the map.

EnviEye Sensor #1 Toluene Concentration Mean Daily Data Output 04/01/2019 - 05/01/2019

Data Interpretation

The average mean daily toluene concentration measured at the site in a thirty-day time period was 285.965 PPB with a standard deviation of 9.822 PPB. The WHO Europe Air Quality Guidelines established worst-case exposure values relevant to a discussion of toluene's adverse health effects at a concentration of 38.57 PPB. Thus, toluene exposure by inhalation is a significant health risk in the Nyanza Chemical Waste Dump area.

EPA Action

Following the sample study, Environa began helping Ashland petition the EPA to develop a new cleanup plan to neutralize the toxic fume sources on Megunko Road. After months of attending community events and public forums, the community and EPA made a final decision on a remedy plan which considers factors like cost, disruption, effectiveness, and time to execute.

The selected remedy is intended to reduce the concentration of contaminants in groundwater to levels that will be protective of human health for exposure to indoor air, such that the existing vapor mitigation systems are no longer needed, and to minimize the need for controls to protect residents in outdoor environments. As of January 2020, the EPA has decided to launch a \$20.5 million, 5-to-10-year initiative to drill into high DNAPL areas and excavate the contaminated groundwater.

Sensor Drift Study

MOS in Ambient Environments

Multivariable Polynomial Modeling

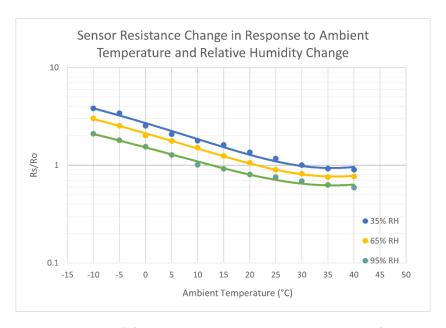
CO Case Study

ANOVA Testing

CO Gas Selectivity

EnviEye Air Pollution Monitoring System TECHNICAL DOCUMENTATION | PATENT PENDING #63250768

MOS in Ambient Environments


Many drawbacks exist restricting the use of MOS gas sensors more widely in ambient environments for pollutant gas sensing. Those include frequently observed drift, poor quality due to reproducibility challenges, narrow dynamic range, and non-linear response. The main consequences of these drawbacks are poor accuracy and precision, especially in outdoor ambient applications where measurement conditions are highly variable.

Uncontrolled fluctuations of ambient temperature and relative humidity significantly reduce the accuracy of MOS gas sensors in field applications. As a result, temperature-induced drift is problematic to the use of MOS sensors in highly variable ambient environments. Therefore, quantifying the impact of temperature and relative humidity change followed by active correction is essential to improve the response accuracy of MOS sensors in ambient applications.

A study was conducted to characterize MOS gas sensor behavior as ambient temperature and relative humidity change simultaneously. Then, a novel method of combining an auxiliary temperature/relative humidity sensor with active algorithmic correction to improve sensor resistance drift was developed. The technique enables self-correction against ambient temperature and relative humidity fluctuations for MOS-based gas sensors. Utilizing this approach, the sensor performance was assessed with carbon monoxide gas samples over the temperature range from -10°C to 40°C and relative humidity intervals of 35%, 65%, and 95% for thirty randomly selected Figaro TGS2600 sensors.

The objective was to improve the accuracy of a tin oxide-based gas sensor by correcting for ambient temperature and relative humidity change. Two aspects of sensor performance were studied (1) sensor resistance variability correlation to temperature and relative humidity change, (2) improvement of sensor response accuracy by active algorithmic correction.

To do this, the sensor resistance change (Rs/Ro) was monitored across changing temperature and relative humidity conditions in a climate chamber. The selected temperature range was -10 to 40 degrees Celsius and the selected relative humidities were 35%, 65%, and 95%.

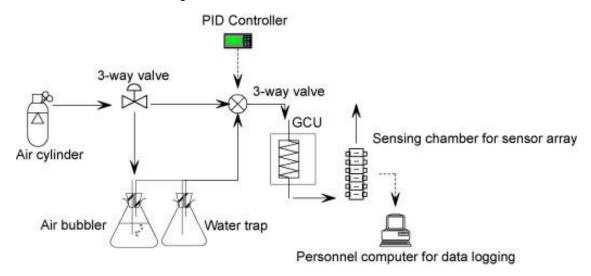
Mean Sample Sensor Resistance Ratio Drift Over Variable Temperature and Relative Humidity Conditions with Second-Degree Polynomial Curve Trendlines.

Multivariable Polynomial Modeling

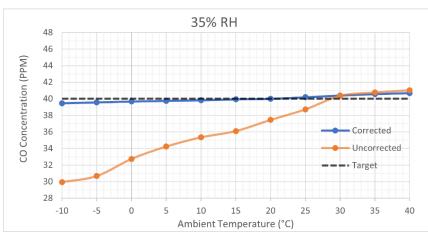
The symmetric nature of the Rs/Ro curves with vertical transformations suggests a limitation of the truncation of a multivariate Taylor series to only the second-order to model the relationship with temperature.

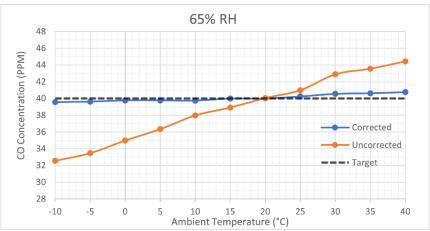
The second-order multivariable polynomial curve form is presented along with the mean coefficients in the table below.

$$K(T, R_H) = aT^2 + bR^2_H + cTR_H + dT + eR_H + f, \{(T, R_H) \mid -10 \le T \le 40, 35 < R_H \le 95\}$$

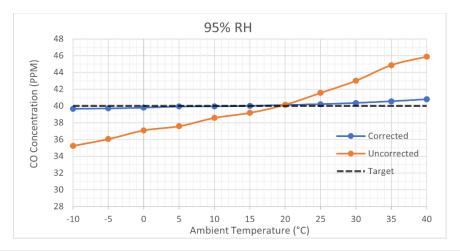

Where a, b, c, d, e, and f represent the coefficients that model the mean dependence of R_s/R_0 upon ambient temperature and relative humidity with a high coefficient of determination ($r^2 = 0.9873$).

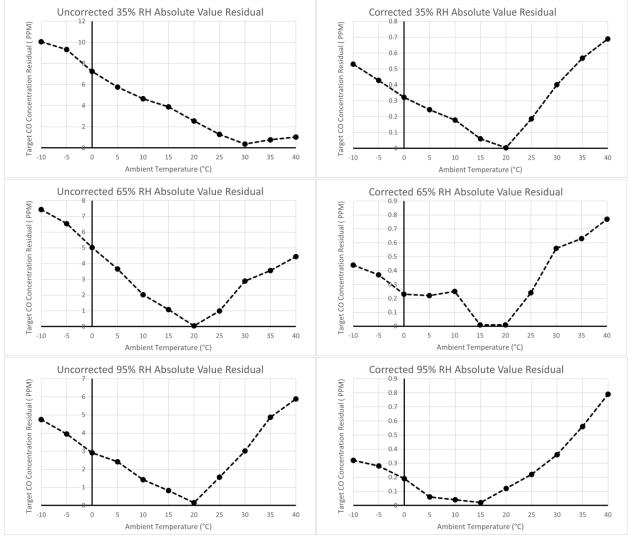
Coefficients	а	Ь	С	d	е	f
Mean curve	0.00103	-3.101·10 ⁻⁶	4.698·10-4	-0.105	-0.0196	3.404


Coefficients for the Best-Fitting Second-Order Multivariable Polynomial to Model Mean Sample Sensor Data



To demonstrate the application of the model in a practical example and quantify its effectiveness in detecting CO concentration, measurements taken by the gas sensors in a 40 ppm CO gas mix were analyzed with and without the correction algorithm.




CO Case Study Experimental Apparatus (Sohn et al., 2008)

Mean and Absolute Residual Sample CO Concentration at Various Relative Humidities for Corrected and Uncorrected Sensors

ANOVA Testing

To test the statistical significance of the correction method, an ANOVA test was conducted for the absolute value residuals of the corrected and uncorrected samples.

Sensor Type	Parameter	35%	65%	95%
Uncorrected	Uncorrected Mean		0.339	0.269
	Variance	0.0471	0.059	0.056
Corrected	Mean	4.264	3.426	2.885
	Variance	12.038	5.455	3.341

Absolute Residual Mean and Variance

On average, the mean absolute residual is 11 times less for corrected samples than uncorrected samples, representing a substantial performance improvement.

Relative Humidity	35%	65%	95%
F-statistic	22.153	19.014	14.099
p-value	0.000135	0.000303	0.00125

ANOVA Testing Results

ANOVA test results show that for all observed relative humidity conditions, F-statistics were higher than 1 at p-values lower than α = 0.05. Thus, the variability between the corrected and uncorrected samples for absolute value residuals is significant.

The effect of interference gasses on the correction-enabled sensors' accuracy was investigated by applying the Carbon Monoxide Testing procedure to five separate gas mixes containing 40 ppm of CO and 5 ppm of either CO2, CH4, ethanol, LPG, or smoke. Each Figaro TGS2600 unit was operated at 250°C for sensor heater temperature-based gas selectivity of CO. Mean corrected sensor responses for all gas mixes are shown below.

Mean Corrected Gas sensor Response in Presence of Interference Gasses

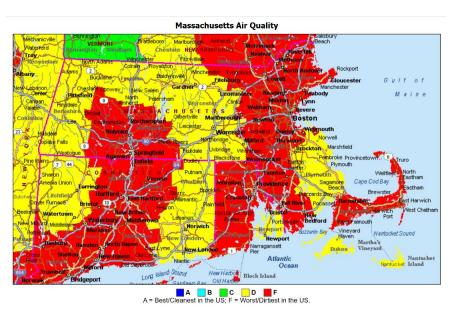
Despite the presence of interference gasses, the mean corrected gas sensor response maintains an accuracy of approximately ± 2.0 ppm. The mean bias of LPG, CO2, and CH4 is minimized to values below ± 1.0 ppm, but ethanol and smoke have a considerable effect on accuracy with a mean bias upwards of ± 1.0 ppm.

Sensors employing temperature-based selectivity and the correction algorithm also measured CO concentration with high accuracy despite the presence of potent interference gasses.

In selectivity testing, bias due to CH4, ethanol, and smoke (containing CO and trace VOCs) was likely higher because they are target gasses for SnO2 at operating temperatures closer to 250°C. Thus, when ambient temperature increased, the measured CO concentration increased as the gas sensors' sensing elements approached higher operating temperatures, and adsorption occurred with compounds other than CO. The ideal operating temperature for LPG and CO2 is lower than that of CO, thus the bias of these interference gasses is relatively low.

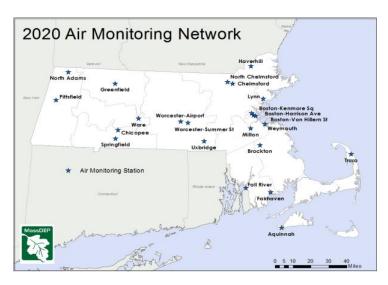
In any case, the selectivity tests demonstrate that controlling heater temperature through circuit manipulations affords a low-cost method of selectivity that warrants significant measurement accuracy when combined with the prescribed correction method. Such results confirm MOS gas sensor's potential for application in conventional field environments polluted by several gas types.

Sensor Location


MassDEP Monitoring Network
EnviEye Monitoring Network

EnviEye Air Pollution Monitoring System TECHNICAL DOCUMENTATION | PATENT PENDING #63250768

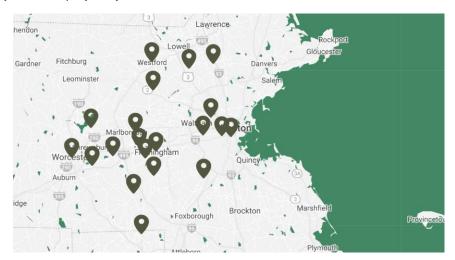
MassDEP Monitoring Network



Harmful air pollutants surround our everyday lives. Sources of these chemicals include traffic, industrial units, chemical waste dumps, and even some agricultural practices. High concentrations of pollutants can be detrimental to health with short- and long-term consequences. Below is a map highlighting Primary Target Areas (PTAs) across Massachusetts.

Massachusetts Air Quality Map (Creative Method, 2021)

However, the MassDEP's Air Monitoring Network reveals patterns in local detection undercoverage. Although air quality measurement operations are present in city areas, few operations are in the suburbs. The lack of data limits air pollution research and EPA action required to improve public health in high-risk areas.



MassDEP 2020 Air Monitoring Network (Massachusetts 2020 Air Monitoring Network Plan, 2020)

EnviEye Monitoring Network

With help from EPA, the EnviEye project gained permissions to deploy the sensor units in public libraries near high traffic areas, industrial/urban hotspots, and agricultural plots across Massachusetts. Below is a map of the 20 EnviEye units deployed by Environa Environmental.

EnviEye Air Pollution Monitoring Network

Sensor Number	Location	Status
1	3 Blue Jay Ln, Ashland, MA 01721	Active
2	158 Union Ave, Framingham, MA 01702	Inactive (August 7, 2021)
3	1159 Harrison Ave, Roxbury, MA 02119	Active
4	151 Linden St, Boylston, MA 01505	Active
5	449 Boston Post Rd E, Marlborough, MA 01752	Active
6	16 School St, Milford, MA 01757	Inactive (October 8, 2021)
7	30 Turnpike Rd, Southborough, MA 01772	Active
8	777 Cass Ave, Woonsocket, RI 02895	Active
9	3 Salem St, Worcester, MA 01608	Active
10	361 Washington St, Brookline, MA 02445	Active
11	33 Walpole Street, Norwood, MA 02062	Active
12	21 Frederick Dr, Wilmington, MA 01887	Active
13	752 Washington St, Holliston, MA 01746	Active
14	55 West Main St, Westborough, MA 01581	Active
15	53 N. Main Street, North Grafton, MA, 01536	Active
16	15 Concord Rd, Billerica, MA 01821	Active
17	330 Homer St, Newton, MA 02459	Active
18	336 Concord Ave, Belmont, MA 02478	Active
19	486 Main St, Acton, MA 01720	Active
20	50 Main St, Westford, MA 01886	Active

EnviEye Sensor Location Data Table

The EnviEye network provides a resource for the American public, assisting with day-to-day decision-making concerning their health and the environment. The collected data is stored in an open-source ThingSpeak data repository to encourage local studies on ambient pollution and raise awareness for necessary EPA action in high health-risk areas.